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Symmetry Reduction From Interactions to Particles
Heinrich Saller!

Received December 14, 2000

The hypercharge-isospin-color symmetry of the standard model interaction is drastically
reduced to a remaining Abelian electromagnélit)-symmetry for the particles. It is
shown that such a symmetry reduction is a consequence of the central correlation in the
internal group as represented by the standard fields where the hypercharge properties
are given by the central isospin-color properties. A maximal diagonalizable symmetry
subgroup (Cartan torus) of the interaction group for the particles as eigenvectors has
to discard either color (confinement) or isospin. An additional diagonalization for the
external spin properties which come centrally correlated with the isospin properties
enforces the weak isospin breakdown.

1. INTRODUCTION

The interactions in the standard model (Weinberg, 1967) of elementary parti-
cles are invariant under the external transformations with the semidirect Roincar”
groupIR* x SOy(1, 3) (with respect to half-integer spins written wish.(C?) as
the twofold covering group of the Lorentz gro8@o (1, 3)) and under the internal
operation group defining hypercharge, isospin, and color properties

interaction symmetry: IR* x SL(C?) x U(1) x SU(2) x SU3)
external internal

The standard interactions are implemented by the 12 internal gauge fields which
come as 4-vectors with respect to the external Lorentz group. | shall show later
that slight but important changes should be made in this group with respect to the
faithfulness of its representation.

There is a dramatic breakdotvrirom the real (10+ 12)-parametric Lie
symmetries (Bourbaki, 1989; Fulton and Harris, 1991; Helgason, 1978) for the
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interaction to the symmetries for the particles

massive particle symmetryIR x SU(2) x U(1)
N e’ N———
external internal

massless particle symmetrylR x U(1) x U(1)
—_— ——

external internal

where Wigner’s definition (Wigner, 1939) for free particles as unitary irreducible
representations of the Poineagfoup is used. In this strict sense, confined quarks
cannot be classified as particles because they do not have a mass as eigenvalue
for the space—time translations. The Poirecgroup representations are induced
(Mackey, 1968) by representations of direct product subgroups which have a ro-
tation factor—eitheiSU(2) with spin numbers] = 0, % 1,... or axial rotation
(polarization)U(1) with numbersM = 0, +1, +2, ... for massive and massless
particles, respectively—and a time translation faiitaepresented in arest system
with massm as eigenvalue for massive partici®d = g? > 0 and in a polariza-
tion system with the absolute value of the momentgin= ¢ as eigenvalue for
massless particles® = g2 = 0, |G| > 0.

The word symmetry—in connection with multiplicity—is used in its strict
sense, for example, as particles, a proton and a neutron may be called an isospin
induced or isospin related doublet, but not an isospin symmetric doublet—uwith
their different masses there is &J(2)-symmetry connecting those two particle
states. Or, more obviously, the four particles comprising the weak bZ6ng/+)
and the photory are not isospin symmetric triplet-singlet, there is no symmetry
transformation left between them.

The internal symmetry reduction from interaction parametrizing fields to
asymptotic free particles has two aspects: Nontrivial c8I0¢3)-representations
are confined, and no nontrivial color induced multiplets are seen in the particle
regime. Nontrivial isospin induced muliplicities remain visible in the case of the
hypercharge—isospin breakdown which is asymptotically reduced to an electro-
magnetic Abeliard(1)-symmetry.

As familiar from the energy eigenstates of quantum mechanics, particles
are constructed as eigenvectors with respect to a maximally diagonalizable sub-
group, including the time translations, with the corresponding weights collecting
the eigenvalues for the operations involved, for example, eigenstates for electro-
magneticU(1)-operations are characterized by integer charge nun#esgin
SU(2)-eigenstates with respect to &D(2) = U(1)-subgroup (third spin direc-
tion) by eigenvalueg)®| < J for a spin (2 + 1)-plet etc. The weights of massive
particles are given bynf, J, z) € R x Z x ZZ with the components for mass,
third spin direction, and integer charge-like number (particle—antiparticle) and the
weights of massless particles are given b§,(M, z) € R x Z x ZZ with the
components for momentum absolute value, polarization, and charge. Therefore,
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the transition from the large interaction symmetry group to the small particle sym-
metry group has to discuss the problem of maximal diagonalizable subgroups of
the interaction group.

2. CENTRAL CORRELATIONS

An important feature of the operation groups where eigenvectors are looked
for is their central correlation structure; this will be explained and exemplified
using the old example of the quantum mechanical Kepler potential (hydrogen
atom (Fock, 1935)) and the internal standard-model-interaction (Hucks, 1991;
O’Raifeartaigh, 1986; Saller, 1992, 1993, 1994, 1998) symmetry.

A direct product of two group$; x G, becomes centrally correlated by
considering the quotient group defined by the classes with respect to a nontrivial
subgroupC in the centers of both factors

G1XG2
C

The following Lie groups will be considered

, {1} £ C C centrG; N centrG,

n=1,2,...: centrU(n) = U(1) D I(n) = centrSU(n) = centrSL(C")

The center o5U(n) can be written additively aZ4nodn or, multiplicatively, as
the cyclotomic group Iif)

Zmodn={0,1,...,n—1} ZI(n) = {7 |k=0,...,n—1)

GroupsSU(n) and SU(m) with n andm relatively prime (no common non-
trivial divisor), for example, isospisU(2) and colorSU(3), cannot be centrally
correlated.

A covering group as Lie algebra exponent gives rise to locally isomorphic
groups (i.e., with isomorphic Lie algebras), with respect to discrete center sub-
groups with the familiar examples:

R/Z = U(1) = U(1)/1(n)
SU(2)/1(2) = SO(3)
SL(C?)/1(2) = SOy(1, 3)
SU3)/1(3)
SU4)/1(2), SU4)/I(4), ...

k divisor of n: SU(n)/1(k), e.g.

Obviously, the irreducible representations and the weights of a centrum clas-
sified group are subsets of those for the unfactorized group.
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2.1. The Eigenstate Squares of the Hydrogen Atom

The perihelion conservation in the orbits as solutions of the Kepler
Hamiltonian
_p? 1
2 X
is described by the Lenz-Runge vecomhich defines a 3-parametric invariance
in addition to the position rotatioBO(3) invariance with the angular momenia
as elements of the rotation Lie algebtag SO(3)

1

-

[=%xp,  F=pxi-2

=

[£, H] =0, [F,H] =0

As shown by Fock, these invariances indicate—not repeating all the subleties found
in the literature—an interaction symmetry for the bound states with ertergy0
with the real six-dimensional Lie algebra with basis. = 1(£ + \/%)}

log[SU(2) x SU(2)] = R®

Therewith the bound states are acted upon with representations of the direct product
two factor groupSU(2) x SU(2) involved whose irreducible representations are
characterized by two-integer or half-integer “spin” numbers

irrep [SU(2) x SU(2)] = irrep SU(2) x irrep SU(2)

irrep SU(2) = {[J] | J =0, % 1}

weights SU2) = {M | M :0,1%,11,...}

However, the experimentally observed energy-degenerated multiplets are all
squares, that is, characterized by two equal “spin” numbers for both factors

[J;3]1 =[0:0], [3: 5], [1;:1], ...
with multiplicities (2J + 1) =1, 4, 9,...
weightd J; J] = {(M1, Mp) | [My12 < J}

2J + 1 is the principal quantum number with the enefgy= _2(T1+1)2' For the

nonrelativistic hydrogen theory, the internal two spin directions for the electron

3Log G denotes the Lie algebra for the Lie groGp
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leading to the observed multiplicities 2[2+ 1> = 2, 8, 18,... have to be taken
into account by hand.
The correlation between the two “spin” numbeds;[J.] in Kepler dynamics
is a consequence of the orthogonality of angular momentum and perihelion vector
LF=0
This orthogonality induces a central correlation: The group maximally faithfully

represented on the bound states is3I0{2) x SU(2), but a quotient group which
correlates the centers of both factors

centrSU(2) = {£1,} = 1(2)
The equivalence group is the “synchronizing” cycle 1(2) in the bicycle K2)2)
(Klein group)
centr SU(2) x SU2)] = {(£1z, £15)} D {(12, 12), (=12, — 1)} = 1(2)
The irreducible representations of the group with the equivalence classes
SU(2) x SU2)
12

are characterized by an integer sum of both “spin” numidgrs J, € IN. They
come in two types

~ SO(4), centrSO(4) = {414} = I(2)

1
J=%=1J:[3;7] withJ:O,E,l,...
J# [ ja]l ® [y K] with 3, 1 =0,1,2,...

with the eigenvalues (weights) in the first case either both integer or both half-
integer and, in the second case, both integer

weights SQ4)3,_3, = {(M1, M) | 2M1 3 € Z, M1 + My € Z}
weights SQ4),,.3, = weights SO3) x weights SQ3)
weights SQ3) = {M | M € Z}
with the defining representations, faithful and not faithful &&(4)

71 17 SU@) x SUR)
(12, 1)~ -1
J # B [1:0] = [0; 1]: w — SO(3) = SUR2)/I(2)

(-1, 1) — +13
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This orthogonality enforces eveh = J,, that is, it allows only the complex
irreducible representations where the weights occupy squares.

2.2. The Hypercharge Correlation with Isospin—Color

The fields of the standard model transform under iso§li2) with the
irreducible representations

irep SUQ2)={[2T] 1 T=0,%1,1,...}

multiplicities: 2T + 1
as well as under coldU(3) with the irreducible representations characterized by
two integers
irrep SU(3) = {[2C1, 2C2] | C12=0,3,1,...}
multiplicities: (2C; + 1)(2C; + 1)(C1 + C2 + 1)

From now on, | use integers, odd and even, for the weights and representa-
tions replacing the half-integers and integers that were used for familiarity in the
Kepler dynamics. The integers are the winding numbkersZ characterizing the
representations df(1)-subgroups.

The left-handed quark and antiquark isodoublet color triplet fields are exam-
ples of the complex six-dimensional defining dual representations of isospin—color

irrep SU(2) x irrep SU(3) = {[2T; 2C4, 2C,]}
defining representations:= [1; 1, 0], U=1[1;0,1]
The totally antisymmetric tensor-powers of the defining representations generate—

up to isomorphism—all fundamental representations for isospin and color by the
products

3 3
forsu2): Au=[1]= /\t, doublet
2

n m

Auve A\t nmeN = Au=[o,1], antitriplet
2

A\ u=[1,0], triplet

Therewith the hypercharge numbeof the interaction fields in the standard
model is a consequence of their isospin—color powers

for SU(3):

6y=n—m
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as shown in the following table:

u(1) SU(2) SUE)
Field Symbol | (n,m) | y="" | [2T] | [2C1. 2Cy]

Left lepton 1 0,3 -3 [1 [0, 0]
Right lepton e (0, 6) -1 [0] [0, Q]
Left quark q (1,0 3 [1 [1,0]
Right up quark u (4,0) 2 [o] [1,0]
Right down quark d (0,2 -1 [0] [1,0]
Higgs P (3,0 1 [1 [0, 0]
Hypercharge gauge A (6,0 0 [0] [0,0]
|sospin gauge B 1,1 0 [2] [0, Q]
Color gauge G 1,1) 0 [0] [1,1]

The hypercharge is related to the two-ality of 8id(2)-representations and
the triality (Baird and Biedenharn, 1964) of t8&)(3)-representations by the mod-
ulo relations

isospin duality: I mod 2= 6y mod 2
color triality: 2(C; — C,) mod 3= 6y mod 3

The centrality §-ality) k mod n of an SU(n)-representations describes the
centrum representation involved

I(n) > e s e e I(n)

for example, faithful folSU(2)-representations with dualityf2zmod 2= 1 and for
SU(3)-representations with triality 24 — C,) mod 3= +1.

This central correlation shows that the group maximally faithfully represented
by the fields in the standard model is given by the following classes of the direct
product group

U(1) x SU2) x SURB)  U(2) x SUB)  SU2) x U(3)
1(6) - 1(3) N 1(2)
The representation of the subgroup “synchronizing” both centrumsd@3) =
1(6) € U(1)N[SU2) x SU(3)]

=U(2 x 3)

iky  2riky

1(6) x I(6) = [(ez”T,e : ) |k1|2=0,...,5]

> [(eZ’T‘k,eZ’T‘k)|k=o,...,5};n(ﬁ)

determines the hypercharge numbers as integer multiplgs of
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The eigenvalue spectrum for the representations of the centrally correlated
internal group is

weights U2 x 3) = {[y||2t; 2c1, 2¢)] | 2t, 2¢, 5 € Z,

CL—C

withy et — +Z}

3. CARTAN TORI

A Lie algebra has Cartan subalgebras, for semisimple Lie algebras given by
maximal Abelian subalgebras, diagonalizable in a representation. Going from a
Lie algebra to its exponent, a Lie group, a Cartan subalgebra gives rise to a Cartan
subgroup. A maximal Abelian direct product subgroup of a compact group

U(L)" = U(L) x --- x U(1)
n times

will be called am-dimensional Cartan torushich may be parametrized for each
direct factor (“circle”) by

UL) = {€° |« [0, 27])

If the dimension of a Cartan torus coincides with the rank of the Lie algebra,
the Cartan torus is callecbmpletefor the group. In general a complete Cartan
torus requires a special (orthogonal) basis. There are situations where a Cartan
subalgebra does exist, but complete Cartan torus do not.

3.1. A Complete Cartan Torus for SUg)

The Lie algebra IogSU(n)%]R”z‘l,nzz, in the defining complex
n-dimensional representation has a basis consisting of traceless and hermitian
generalized Pauli matrices

ML tre()?=0, o()? = (0?3

constructed inductively from the proper Pauli matried®) = o. The start for
n > 3is the embedded Lie subalgebrasif(n — 1) with

cr(n+1)a‘=<o(8)é1 8), a=1,...,n> -1

The new off-diagonal matrices far=n?, ..., (n + 1)> — 2 come in i — 1) pairs
with unit column vectors and their transposeel as illustrated in the first step
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for the eight Gell-Mann matrices(3) = A

o+ 1) = (22 g) . o+ 1pti= <%“T’_Tie>
0 01 0 0-i
c@3*=10 00|, c(3°=|(0 00
1 00 i 00
0
0
i

10
0 0|0 0
oc@%=(0 01], o3 =1[0
0 1o 0 i

The new diagonal matrix is defined by
2_ 1 (1,2 O
n n—1 — n—1
o) B) ( 0 |-(n-1)
2
Therewith the normalization is as for the proper Pauli matrices
tr o(n)2o (n)® = 252°

A Cartan subalgebra ldg(1)"~! is spanned by the diagonal matrices

Cartan subalgebra bas:{s".'cr(n)mz‘1 Im=2,3,...,n}

whose exponent gives a complete Cartan torus of dimenmsieri (rank of log
SuU(n)).

The characteristic diagonal element with a nontrivial determinant generates
the centrum o8U(n) and is renormalized to display intedéfl)-winding numbers
in the diagonal

Wy, = /<2>a(n)”21 = (1'61 _(no_ 1)) , detw, = —(n — 1)

U(Lre—1 = {€" | @ € [0, 27])
e — o5 1, € U(1n) N U(L)e_1 = U(Ln) N SU(N) = I(n)
HereU(1,)) = U(1)1, denotes the scalar phase group.

3.2. A Complete Cartan Torus for Hyperisospin
Hypercharge and isospin symmetry with central correlation, called hyper-

isospin
U(1) x SU?2)

@ =uo



1160 Saller

has a Cartan subalgebra in the defining complex two-dimensional representation
lieoly +iaso® | o3 € [0, 27]} = R?

Its exponent has the scalar hypercharge and the third isospin component phase
group as factors which, however, are no direct factors for a torus

eia012+i¢¥353 c U(lz) o U(l)S

The parametrization has inherited the following ambiguity from the common cen-
trum U(1) N SU2) = 1(2)

(o, a3) = (7, 0)= (0,7), €™ =d™° = _1, € 1(2) = U(L,) N SUQR)

A Cartan torus olU(2) arises with a projector basis containing two orthogonal
elements

L 1te3 L 108

gz d*"z eU)y x U1, oar=agFoas
1, + 08

Pi@)= 55— PP (=0

For the general case,
U(1) x SU(n)
I(n)
the exponent of a Cartan subalgebra in the defining compldixnensional rep-
resentation

= U(n), U(1,) N SUn) = I(n)

n
iooly +i Y eme_10(M)™ | aom € [0, 27] } =R

m=2
gives an Abelian group where the scalar phase factor is correlated with the centrum
generating factor

U(L,) o U@)e_g x U2, €% ¢ U(1)e_y
e.g., forU®3): U(ls) o U(L)g x U(L)s, €3 e U(1)g, ws= /318
A Cartan torus comes with the appropriate projecfdrén) and parameters..
U, x UQ)- x U2, g=POdePM ¢ y(1), x U1)-

P(n) = —(n — U+ Wn, oy =og+ Fne—1
n W)

with _ )
P =1 — g (- T

Pi(MP-(n) =0,  Wn)*=(n— 1)l — (N — 2wy

For the group&J(n) with rankn Lie algebras there exist complete Cartan tori.
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3.3. A Complete Cartan Torus for the Hydrogen Atom

For the nonrelativistic hydrogen bound states, an exponentiated Cartan subal-
gebra of logBU(2) x SU(2)] with basis{ic ® 1,, 1, ® it} in the defining quartet
representation

Cartan algebrdioazo® ® 1, + 1, ® iBs7®} = R?

g (ea+p3) 0 0 0
eia3‘73 ® eiﬂ373 — 0 e|(a37/33) ' 0 c U(1)3 o U(1)3
0 0 i (az—p3) 0
0 0 0 i (az+ps)

parametersfos + B3, a3 — B3}

leads to a complete Cartan torus via a basis of orthogonal generatofsr
coordinates .

eiot3tr3 ® eiﬁ31’3 — eil/w’v‘iei)’*’/“':j e U(Q), x U(1)-

3 3
c’RL+LT
3 = 5 . L3L2=0, yr=oaztfs
£3 = [3is the third component of the angular momenta®@(3), £3 ~ 73 is
proportional to the third component of the perihelion vector.
In the case of two special groups, centrally correlatable for dimensions with
a common nontrivial factor

SU(n) x SU(m)
1(K) ’

the exponent of a Cartan Lie subalgebra is centrally correlated by¢hgs
generated by, andw,:

I(k) c I(n) N Ii(m), nmk>2

U(Dnz—1 0 U(D)mz—1 x U(l)n+m_4
U(L)ne—1 0 U(Q)ne_1-Lie algebrafiaw, ® 1y + 1y ® i BWm} = R?
€ ® &/ € U(L)z-1 0 U(Le1

In general, there arise four parameters

g la+p] 0 0 0
i[o—(m—1
g ® B 0 g la—(m-1)8] 0 0
- 0 0 e i [(n—1)a—p] 0
0 0 0 e [(n—La+(m—-1)8]

parametersfa + 8, — (M —1)8, (n — L) — B, (N — L) — (M — 1)B}
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which, only for the hydrogen symmetry with=m = 2, allows an orthogonal
Cartan subalgebra basis leading to a complete Cartan torus.

3.4. No Complete Cartan Torus for Hypercharge—Isospin—Color

The internal interaction symmetty(2 x 3) = YL EU2-SU) has a defin-

ing complex six-dimensional representation for its Lie aIgeLra with rank 4

log[U(1) x SU(2) x SUR)] = {iapl, ® 13 +ia7 ® 13+ 1, ® i Bi} = R*¥?
Cartan subalgebrdiaol, ® 13 + iast® ® 13 4 1> ® i (831> + Bgr’)} = R?

using three Pauli matricés(isospin) and eight Gell-Mann matricés(color).
The exponentiated Lie algebra has three correlated factors generated with
W, = o3 andws = /318

U(ls) o U(2)s 0 U(1)s x U()

ei05912®13-H0137:3<X>13+12®i/33)»8 c U(lﬁ) ° U(l)g o U(1)8

The relevant parameter combinations in the four phases that arise

parameters{(ao toaz)+ — Pe (ot

ot )

V3

cannot be disentangled with an orthogonal basis for a representation of the direct
productU(1) x U(1) x U(1).

There exists a complete Cartan totuiel), x U(1)_ for hyperisospirlJ(2),
parametrized witloo & o3}, and a complete Cartan torU$1)Jr x U(1)- x U(1)s
for hypercolotJ(3), parametrized witkoo + f , 00 — T Bs}. However, a com-
plete Cartan torusJ(1)* for faithful representations of the internal(2 x 3)-
interaction symmetry does not exist.

4. EIGENVECTOR BASES FOR CORRELATED GROUPS

A semisimple Lie algebra, and also ldd(n), allows—for any finite-
dimensional representation vector space—a basis of eigenvectors for a Cartan
subalgebra. A Lie algebra representation also involving nontrivial nilpotent trans-
formations need not have an eigenvector basis (; Boerner, 1955).

Eigenvectors of a Cartan subalgebra need not remain eigenvectors for the
exponentiated Cartan algebra. However, eigenvectors of a direct product of Abelian
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groups—of a Cartan torus in the compact case—are needed in the definition of
particles (eigenstates).

In the following, “eigenvectors of a Lie algebra” and “eigenvectors of a
Lie group” are the acronyms for “eigenvectors of a Cartan subalgebra” and
“eigenvectors of a maximal direct product Abelian subgroup,” in the case of a
compact Lie group of a maximal Cartan torus. With the choice of an eigenvector
basis (or of a Cartan subalgebra or of a Cartan torus) the original full symmetry
seems to be broken. However, the full symmetry remains in the set with all possible
eigenbases, for example, for sgBh(2) with a complete Cartan toru$(1);: The
third direction choice to measure spin eigenvalues can be replaced equivalently by
any direction.

Since a correlation of two Lie grous; x G, via a discrete centrui@ does
not change the Lie algebra

G]_XGZ

I
og c

=log[G1 x G2] =logG; & log G,

a case can arise where there exists an eigenvector basis for the Lie algebra repre-
sentation space but not for the correlated group. This is the case for compact groups
without a complete Cartan torus, especially for the internal interaction symmetry

group.

4.1. An Eigenvector Basis for Uf)

If a represented compact group has a complete Cartan torus there exists an
eigenvector basis of the representation vector space—exemplified(riprand
obviously true also foSU(n).

The diagonals of the log(n)-Cartan subalgebra basis in the defining repre-
sentation

[iln,ic()™* m=23,...,n}
taken as columns in the followingi(x n)-scheme (betweef---||) display—
up toi—the eigenvalues as components of the weights (in the lines) with the

eigenvectors

1 0
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el 1 1 i i i
V3 V6 \/(TZ)

1 1 1

e 1] -1 — = ... —
V3 /6 n

e3 11 0 _i i E
V3 V6 \/(TZ)

et 1 0 0 _i i
NCRNW)
e |10 o o .=t
(2)

For example, for logJ(1) in the left upper (Ix 1)-matrix, for logu(2) in the
left upper (2x 2)-matrix, etc. A geometrical aside, not really surprising with the
permutation group as symmetry group for the fundamesitiih)-weights: Erasing
the first column with the’s for log U(1), the remainingn lines (SU(n)-weights
with n — 1 components betweeén. . ||) give the corners of a regular fundamental
simplex (distance, triangle, tetraeder, etc.) centered at the oridRi of.

The Lie algebra for the correlated grou§l,) o U(1),2_1 has 2-component
weights,

el: 1 1
e 1 1
for basis{i 1,, iw,}: : :
el |1 1

e 1| —(n-1)

e: ||1]0

e || 1|0

for projector basigi P + (n)}: : D
e |10

e 01

Obviously, the eigenvectors keep their property for the complete Cartan torus
U(1); x U(1)- x U()"?; for example, an eigenvector basis for hyperisospin
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U(2) is given by{e!, €’} with

3 3 3
doat B ga— ol _ dat 2 o1

1p—o3 1p—o3

o3 . .
L de g2 a2

eiot+

4.2. An Eigenvector Basis for the Hydrogen Atom

Inthe defining quarte%[; %] representation of th8O(4)-invariant bound state
dynamics of the hydrogen atom, the eigenvectors of the Lie algebra as basis of the
representation spade ® C?

sos-(oll) sor-()o() coneos

have the eigenvalues, given in the following table:

[ [Feuleor[a]=]

elget +1 +1 +1] 0
el +1 -1 0 1
e -1 +1 0| -1
e -1 -1 -1] 0

3 3
3 _ o Lh+Ler
L] = —552—

They remain eigenvectors of the correlated gr@{4) where they have to be
characterized by the orthogonal bag%£3 = 0. The third angular momentum
£3 = £3 component generates an axial rotation gretip~? € SO(2) ¢ SO(3).
The quartet comes as$0(3)-triplet (€' ® e, %ﬁw, ee)withL =1
and as a singleiM with L = 0. The seconcf basis elemefit = f—;H
also generates an X%elian subgr@@(2), which, however, is not a subgroup of
anotherSO(3). Its eigenvalue is related to the number of radial krigtg the
Schidinger wave functions2+ 1 = L 4+ 1+ N (not directlyN = L31).

4.3. No Eigenvector Basis for Hypercharge—Isospin—Color

The defining representation of the Lie algebra W{]) x SU(2) x SU(3)]
on a complex six-dimensional spaté & C* has an eigenvector basis with the
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eigenvalues read from the diagonal Pauli matrices given in the following table:

| [vien ] Pen [ neva [Le|

elee Y +1 +1 +1
el ® e Y +1 +1 -1
el®e \4 +1 -2 0
f et N4 -1 +1 +1
e Y -1 +1 -1
el \4 -1 -2 0

The normalizatiorY € IR will be discussed hereafter.

Without a complete Cartan torus there do not exist eigenvector bases for the
correlated groupJ(2 x 3) in faithful representations.

The subset of thodg(2 x 3)-representations which are trivial either for color
or forisospin, that is, the representations of hyperisosif#t) or hypercolotJ(3),
allow eigenvector bases ftr(2) andU(3), respectively. They are obtained from
the corresponding fundamental representations given by the antisymmetric cube
or the antisymmetric square of the definld¢? x 3)-representation which triples
and doubles the hypercharge normalization. Those product representations have
the eigenvector bases

/3\u € U(2 on C?with3Y =1
[ v |w|Pa. | Pro |
et || 3y | +1| 1 0
& || 3y [-1] o 1

wp =73 P(Qs = 2522

/2\u e U@)on Cwith2y =1
[ [2vs[ws | 2] P, | P |

el || 2y |14 1 0
& || 2y [+ -2] 12 0
& || 2y | 2| o 0 1

ws = V3.8 P@), = Hsd¥ia, p(3)_ = laWa

To obtain the projectors, the normalizatigrhas to fullfill 3]Y| = 1 for U(2) and
2lY| =1 forU(3).
It is impossible to give an eigenvector basis for the internal gtd(@x 3)
in faithful representations, for example, for the left-handed isodoublet color triplet
quark representatior%ﬂl; 1, 0]. It is possible to give eigenvector bases for the
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reduced internal groupd(2) or U(3), for example, for the representations with
the left-handed isodoublet color singlet lepton or the right-handed isosinglet color
triplet quarks, respectively. A quark confinement can be interpreted as the de-
cision with respect to a particle classification for the complete Cartan torus
U(1); x U(1)- c U(2) for hyperisospin and against the complete Cartan torus
U(1), x U(1)- x U(1); c U(3) for hypercolor.
With the reduction fromUJ(2 x 3) to hyperisospirJ(2), the projector basis
generates the electromagnetic subgrdl{) as one factor in the Cartan
torus sayJ(1),.. With the choice of a projector basis to characterize eigenstates,
no reduction from the interaction hyperisospin symmeki®) to the particle elec-
tromagnetic symmetry(1), is enforced.

12ﬂ:l'

5. THE EXTERNAL-INTERNAL SYMMETRY CORRELATION

Also the external Lorentz group and the internal hyperisospin-color group for
the interaction symmetry transformations are centrally correlated.

5.1. Correlations by Defining Representations

Correlations are implementable by specific representations, especially by
defining representations.

Arankr semisimple Lie algebra, for example, I8%)(n) withr = n — 1, has
r-fundamental representations, for example, quark and antiquark representations
[1, 0] and [0, 1] for logSU(3), which are a basis—with respect to totally symmet-
ric tensor products—for all representations, for examplg; [2C,] < 2\C?l[l, 0l ®
vz[O, 1]. A layer deeper are the defining representations which are a subset of the
fundamental representations and allow, also using totally antisymmetric products,
to construct all fundamental representations, for example, antitriplet from triplets
[0, 1] =[1, O] A [1, Q]. If such a defining representation comes with a central cor-
relation of the represented groups, all its products will inherit this correlation.

The complex defining representation2if(n) on C' comes with a represen-
tation of the scalar phadé(1,)

U(n) 5 elaoYlnercr(n) [Y” 1 0.. 0]
\/_/

n—1 places

e.g.,U(2) 5 e®Ytias — [y 1]
U(3) 5 eioonlz-‘ri&X — [Y”l, O]

The correlation from theJ(n) = w representation is inherited by all prod-
ucts, for example, for the antisymmetric ones withlity k modn

/\[Y||1O =[kY|0,...,0,1,0,...,0], k=1,....,n—1
kth place
/\[Y||1,o,..., 0] =[nY]0,...,0,0], nYeZ
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The U(1)-representation for power has to come with an integer winding num-
ber, minimal for|nY| = 1. For the examples above one obtains with minimal
hyperchargér

1
) [Yul]zAT[Ynl] =[2Y]0] € U(D), IYI=3
VIYI1] = [2TY|2T|, 2T =0,1,...
. [YIIL, 01A3 [Y]I1, 0] = [2Y]|0, 1]
5 ALY[1,0]= [3Y]0,0] € U(1), |Y|= %

In this way, if all interaction parametrizing fields of the standard model arise
as representation products of one defining complex six-dimensional representation
on @ ® C3, they display the central I(6)-correlation as giverkuiﬁﬁ)xsf’(%)ixsw,
for example, for the fermion fields

1

quark isodoubleg withu = [(—3 1;1, O}
2 1 T
down antiquark isosinglet* with Au = 3 0;0,1
1f,. 3 (1 ]
U=1% 1;1,0] = qantilepton isodoublet* with Au = > 1;0,0
4 2 T
up quark isosinglet with Au = 3 0;1,0

6
lepton isosingle&* with Au = [1]0;0, 0]

Similarily, the defining quartet (2s and 2p states) representaﬁpgl] [on
C? ® C? for the bound states of the hydrogen atom gives rise to all bound state
represen,t\gtions][; J] arising %sNdirect summands in one of the totally symmetric

products\/[3; 3] acting on s
N @ [J;J], Neven=2J+1odd
\/ 11]_ Jo=01-.%
2’2 [J;3], Nodd = 2J+ 1even
N

L]
13
I=3.3m32

All these representations inherit the II(2)-correIatior§Hﬁw, nontrivial for
even multiplicities (3 + 1)? = 4, 16,. . ..
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5.2. The Spin—Isospin Correlation

If the hadrons arise from quark field products they inherit the I(2)-correlation
from Lorentz SL(C?) and isospinSU(2) in the fundamental representation on
C? ® C?, as seen in the left-handed Weyl doublet isodoublet color triplet quark
representation ond@® €2 @ C°, faithful for the centrally correlated group

SL(C?) x U(1) x SU2) x SU(3)
1(2) x 1(2) x 1(3)
and arising also in the left-handed Weyl doublet isodoublet color singlet lepton
representation ond@® €2, faithful for
SL(C?) x U(1) x SU(2)
1(2) x 1(2)

One factor I(2) correlates spin BL(C?) with isospinSU(2), the other factor 1(2)
isospinSU(2) with hyperchargé)(1).

A three-dimensional Cartan subalgebra for a maximal compact seven-
dimensional Lie subalgebra for spin, hypercharge, and isospin

R’ = log[SU(2) x U(1) x SU(2)] C log[SL(C?) x U(1) x SU(2)] = R

in a fundamental complex four-dimensional representation is given by
{ia)303 QL +ial®el+1L,® ia3t3} ~ R3
The exponent involves four parameters
U(1)ss 0 U(12) 0 U(1):s = U(1)5s o [U(1)1 x U(1)-]
parameters{tws + oo £ a3} = {*wz + oy, Twsz + o}

which prevent a complete three-dimensional Cartan torus™#r @ Su@.
There exist complete two-dimensional Cartan tofl) x U(1) for ti1e centrally
correlated two factor subgroups
SU(2) x U(1) SU(2) x SU(2)
/M xy@E), —/— 7 >=s0(4
2 ) 2 O(4)

Therefore, one has to decide with respect to eigenvector bases once more
for a subgroup with a two-dimensional Cartan torus—the choice in the observed
particles isU(2) with the scalar phase factor the electromagnétit), c U(2)
from hyperisospin

SU2) x U(1),

1(2)
. o403 _ 1p+c3
Cartan toruse (@s+e) %582

u@)= D U(1)y3 0 U(1),, parameters{tws + o}

1p—03 _ 15473

g(Ceste) %5055 ¢ U(1),, x U(1)_y
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The other hyperisospin circld(1)_ does not arise with eigenvectors. In the stan-
dard model th&J(1)_ symmetry is spontaneously broken via a degenerated ground
state, implemented by the Higgs fieldin a definingU(2)-representation

.3
(@ ® dF) = <|3|)®(O,M)= (8 '32> _ T

2
The groupJ(2) induces nontrivial isospin multiplicities in the representation space
(particles as translation eigenvectors) in contrast to the confined color.

6. SUMMARY

The construction of eigenstates for the large homogeneous interaction sym-
metry group can be done in three stepy (he first two ones characterized by the
choice of a maximal, but not complete Cartan torus

Group Defining field Representation
wa,i
Interaction operations SL(TY) x UI((lz))i Is(gZ) x SUE) a=12 With [% I1; 1, O]
i=123
Confinement of color SU(3) 1
(A )
v)o
SL(C?) x U(1) x SU(2) ; 1
(@10 w=12 W'th[zlll]
Reduction U(2) — U(1)+
to charge 1
3
SL(T?) x U(D) P+ = (A ¥)a With [1], [0]

12 . 3
No = q)ﬁeﬁa(/\ Vo

Rest or momentum system N
SU(2) x U(1)+
m2 > 0: 18
= U2
Particles

U3 x V()
: 7]
= U(1) x U(1)
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In the third and fourth column only the internal representation properties are
given.
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